
1

ADC Clock Jitter Model, Part 2 – Random Jitter

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it

to examples with deterministic jitter. Now we’ll investigate an ADC with random clock jitter, by using a

filtered or unfiltered Gaussian sequence as the jitter source. What we are calling jitter can also be called

time jitter, phase jitter, or phase noise. It’s all the same phenomenon. Typically, we call it jitter when

we have a time-domain representation, and noise when we’re in the frequency domain.

We’ll look at three examples: band-limited Gaussian jitter, wideband Gaussian jitter, and close-in phase

noise. In all of the examples, the analog input signals are pure sinewaves, either single or multiple. So

keep in mind that the noise on the output signals is caused by the sample clock (and to a lesser degree

by quantization). A Matlab function adc_jitter for modeling the ADC jitter is listed in the appendix of

Part 1. I’ve also added a modified version, adc_jitter_cubic in Appendix B of this article.

2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

MHz

dB

2

Example 1. Band-limited Gaussian jitter

In this example, we model an ADC with band-limited Gaussian jitter on its sample clock. We use a

simple Butterworth filter to provide the band limiting. While this is not a typical real-world case, it

shows that random jitter sidebands behave similarly to the sinusoidal jitter we modeled in Part 1.

As in Part 1, we have to create the input signal and the time jitter vector before we call the Matlab

function. First, we define the ADC sample rate and input signal frequency. Also, we define the

simulation sample rate, which is twice the ADC sample rate.

randn('state',1) % reset random number generator

fs_adc= 10E6; % Hz ADC sample rate

f0 = 1E6; % Hz ADC input sinewave frequency

fs= 2*fs_adc; % Hz simulation sample rate

Next, define the analog input sinewave x:

Ts= 1/fs;

N= 2^15;

n= 0:N-1;

x= sin(2*pi*f0*n*Ts); % adc input

Now we create a lowpass Butterworth filter and use it to filter a Gaussian random sequence. The 7th
order filter’s cutoff frequency is 0.5 MHz. The units of the jitter amplitude is seconds. We compute the
jitter in samples = dt/Ts, then call the Matlab function adc_jitter. Finally, we quantize the output to
10 bits.

% create random band-limited jitter

fc= .5e6; % Hz cutoff freq of noise filter

[b,a]= butter(7,2*fc/fs); % coeffs of noise filter

A= 1e-9; % s jitter std. deviation before filtering

u= A*randn(1,N); % AWGN sequence

dt= filter(b,a,u); % s filtered sequence = jitter of sample clock

dsample= dt/Ts; % jitter in samples

y= adc_jitter(x,dsample); % ADC jitter function

nbits= 10; % ADC number of bits (ideal quantization)

y= floor(2^(nbits-1)*y)/2^(nbits-1);

The output y is at the fs_adc sample rate of 10 MHz. Figure 1 shows the spectra of the input sine wave

and ADC output. The jitter has created a noise pedestal with bandwidth of 1 MHz. Now let’s create an

input signal using two sine waves, one centered at 1 MHz, and the other at 4 MHz:

x= .5*(sin(2*pi*f0*n*Ts) + sin(2*pi*4*f0*n*Ts)); % adc input

3

The resulting spectra are shown in Figure 2. As you can see, the noise pedestal of the high frequency

signal is about 12 dB higher than that of the low frequency signal. This agrees with the relationship of

Equation 3 in Part 1 for sinusoidal jitter, i.e., sideband level varies as 20*log10 of the input signal’s carrier

frequency: 20*log10(4 MHz/1 MHz) = 12 dB.

Figure 1. ADC with band-limited Gaussian jitter on sample clock and sinusoidal input.

 Top: Spectrum of input signal Bottom: Spectrum of output signal
 Nadc= N/2; psd(y,Nadc/8,fs_adc/1e6,flattopwin(Nadc/8))

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-60

-40

-20

0

20

MHz

dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-60

-40

-20

0

20

MHz

dB

quantization noise floor

4

Figure 2. ADC with band-limited Gaussian jitter on sample clock and dual sinusoidal input.

 Top: Spectrum of input signal Bottom: Spectrum of output signal

Example 2. Wideband Gaussian jitter

Figures 3 and 4 show the spectra for a sine input to the ADC at 4 Mhz. Both have the same standard

deviation of the sample clock jitter to start, but in Figure 3, the jitter is filtered, while it is not filtered in

Figure 4 (wideband jitter). The wideband jitter is generated as follows, using the same standard

deviation as example 1:

A= 1e-9; % s jitter std. deviation

u= A*randn(1,N); % AWGN sequence

dt= u; % s jitter of sample clock

We might expect the noise levels near 4 MHz to be the same, but the noise of the wideband jitter case is

about 3 dB higher. The reason is that when adc_jitter downsamples the signal by 2, the wideband

noise between fs/2 and fs is aliased into the 0 to fs/2 band. We can call this phenomenon a “feature” of

adc_jitter, rather than a bug, because it occurs in real-world ADC’s as well. In fact, the noise energy

of the sample clock can alias multiple times, since the bandwidth of the sample clock path is normally

several times the sample frequency. Unfortunately, the user does not typically know this bandwidth.

If the wideband noise floor is too high, it can harm the ADC’s SNR more than the close-in phase noise.

However, low-pass filtering the sample clock is not a cure-all; if the edge is too slow, jitter can be added

due to ground noise being transferred to the clock. See [1] for a more detailed discussion.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-60

-40

-20

0

20

MHz

dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-60

-40

-20

0

20

MHz

dB

5

Figure 3. Spectrum of ADC output with band-limited Gaussian jitter on sample clock

 and sinusoidal input at 4 MHz.

Figure 4. Spectrum of ADC output with wideband Gaussian jitter on sample clock

 and sinusoidal input at 4 MHz.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

MHz

dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

MHz

dB

6

Here’s another peculiar effect of wideband jitter. As we have seen, the spectral noise due to sample

clock jitter depends on the frequency of the input signal. Consider an example shown in Figure 5 with

wideband Gaussian noise on the sample clock. There are noiseless input sinewaves at 1 MHz and 2.3

MHz, and the signal at 2.3 MHz is 20 dB lower than the signal at 1 MHz. If we move the larger signal to 4

MHz, the noise floor rises by 12 dB (as in Example 1). So the “victim” signal at 2.3 MHz sees its SNR

degraded by 12 dB, just due to the new frequency of the larger signal.

Figure 5. ADC output spectra for two frequencies of input aggressor signal.

 Top: Aggressor signal at 1 MHz. Bottom: Aggressor signal at 4 MHz.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-50

-40

-30

-20

-10

0

10

20

MHz

dB

Victim

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-50

-40

-30

-20

-10

0

10

20

MHz

dB

Victim

7

Example 3. Close-in Phase Noise

In this example, we model sample clock close-in phase noise by shaping Gaussian noise to resemble a

real-world clock source [2]. The noise has a flat region up to almost 10 kHz, followed by frequency

ranges with -12 dB/octave and -6 dB/octave slope, followed by flat noise. We achieve this by

synthesizing a filter with the desired response and using it to filter Gaussian noise. A Matlab function to

synthesize the filter is listed in Appendix A.

As in the earlier examples, I started out using parabolic interpolation to model the ADC jitter, but the

resulting jitter at the ADC output was typically about 7% less than the sample clock jitter. I switched to

cubic interpolation [3, 4] and got more accurate results. The Matlab function adc_jitter_cubic is

listed in Appendix B (The parabolic interpolation version is listed in the appendix of Part 1). Note that

the cubic interpolator frequency response for mu= 0.5 is about 1 dB down at fs/4.

The ADC input is a noiseless sinewave. We define the various simulation parameters as in Example 1,

noting that input sinewave frequency f0= 3 MHz and the number of samples N is 2^17 = 131,072.

randn('state',3) % initial state of RN generator

fs_adc= 10E6; % Hz ADC sample rate

f0 = 3E6; % ADC input sinewave frequency

fs= 2*fs_adc; % Hz simulation sample rate

Ts= 1/fs;

N= 2^17;

n= 0:N-1;

x= sin(2*pi*f0*n*Ts); % adc input

Next we define the noise shaping filter, using three frequencies to determine the regions of different
slope. Then we filter the Gaussian sequence and call the function adc_jitter_cubic. We quantize
the ADC output to 10 bits.

f1= 10000; f2= 100000; f3= 1e6; % Hz filter breakpoints

[b,a]= noise_filter(f1,f2,f3,fs);

A= 9e-9; % s jitter sigma before noise filter

u= A*randn(1,N);

dt= filter(b,a,u); % s jitter of sample clock

dsample= dt/Ts; % jitter in samples

y= adc_jitter_cubic(x,dsample); % ADC jitter function (cubic interp)

nbits= 10; % ADC number of bits (ideal quantization)

y= floor(2^(nbits-1)*y)/2^(nbits-1); % quantize to nbits

8

The resulting spectrum at the ADC output is shown in Figure 6, which has a frequency span of 400 kHz.

For an ADC output sequence of length 216, we employed spectrum averaging with a psd of length of

216/4 = 16,384 samples. For our ADC sample frequency of 10 MHz, this gives a frequency resolution of

roughly 1 kHz using a flat-top window. Had we used a sample frequency of 100 MHz, the frequency

resolution would have been very coarse at about 10 kHz. This shows the challenge of modeling close-in

phase noise in the frequency domain: the signal of interest has bandwidth much less than the sample

rate. So we need many samples to get the desired frequency resolution.

Now let’s compare the jitter on the ADC output signal to the sample clock jitter: they should be

approximately equal. To do this, we have to phase-demodulate the signal. The code to perform

demodulation is listed in Appendix C. We call the demodulator output ϕd. The time jitter is:

Δ𝑡 =
𝜙𝑑

2𝜋
𝑇0

=
𝜙𝑑

2𝜋𝑓0

The jitter on the sample clock and on the ADC output signal are plotted as histograms in Figure 7. We

can also compare the rms jitter of the sample clock and ADC output. RMS jitter is:

Δ𝑡𝑟𝑚𝑠 = (
∑(Δ𝑡)2

𝑁
)

1/2

Here are the Matlab calculations. The rms output jitter is only 1.2% away from the rms sample clock

jitter:

dt_ps_rms= sqrt(sum(dt_ps.^2)/N) % ps rms jitter of sample clock

jitter_ps_rms= sqrt(sum(jitter_ps.^2)/length(jitter_ps)) % ps rms jitter

of output

dt_ps_rms = 276.7063

jitter_ps_rms = 280.0680

9

Figure 6. Spectrum of ADC output for sample clock with shaped Gaussian noise.
Nadc= N/2; psd(y,Nadc/4,fs_adc/1e6,flattopwin(Nadc/4))

Figure 7. Jitter Histograms for shaped Gaussian noise on sample clock

 Left: Jitter of sample clock. Right: Jitter on sinewave at ADC output, f0 = 3 MHz.

2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

MHz

dB

-1000 -500 0 500 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ps

pr
ob

ab
ili

ty

-1000 -500 0 500 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ps

pr
ob

ab
ili

ty

10

References

1. Brannon, Brad, “Sampled Systems and the Effects of Clock Phase Noise and Jitter”, Analog Devices

Application Note AN-756, 2004

 http://www.analog.com/media/en/technical-documentation/application-notes/AN-756.pdf

2. Goldberg, Bar-Giora, “Phase Noise Theory and Measurements: A Short Review”, Microwave Journal,

Jan 1 2000.

https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Revi

ew&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.466

9j0j8&sourceid=chrome&ie=UTF-8

3. Erup, Lars; Gardner, Floyd M. and Harris, Robert A., “Interpolation in Digital Modems – Part II:

Implementation and Performance”, IEEE Transactions on Communications, Vol 41, No. 6, June 1993.

4. Rice, Michael, Digital Communications, a Discrete-Time Approach, Pearson Prentice Hall, 2009,

section 8.4.2.

Neil Robertson April, 2018 revised: 4/24/18, 3/30/19

http://www.analog.com/media/en/technical-documentation/application-notes/AN-756.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-756.pdf
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&oq=%2C+Phase+Noise+Theory+and+Measurements%3A+A+Short+Review&aqs=chrome..69i57.4669j0j8&sourceid=chrome&ie=UTF-8

11

Appendix A Matlab Function noise_filter

This function synthesizes a noise-shaping filter as a cascade of a 2nd order Butterworth lowpass and two
proportional + derivative (PD) filters. The function’s inputs are sample rate and three frequencies that
set the corner frequencies of the constituent filters. For widely spaced frequencies, the approximate
slope of the filter response is:

• flat to f1

• -12 dB/octave between f1 and f2

• -6 dB/octave between f2 and f3

• flat above f3

Each PD filter has flat response from dc to just below the corner frequency f2 or f3, then the response
rises at +6 dB/octave. H(z) is given by:

𝐻(𝑧) = 𝑏0 + 𝑏1𝑧−1 ,

where, for example, to achieve corner frequency of approximately f2, b0 and b1 are:

𝑏0 =
𝑓𝑠

2𝜋𝑓2

 𝑏1 = 1 −
𝑓𝑠

2𝜋𝑓2

The overall filter response used in Example 3 is shown in Figure A.1 vs. a log frequency scale.

Figure A.1 Noise shaping filter response for f1 = 10 kHz, f2= 100 kHz, f3= 1 MHz, fs= 10 MHz

10
3

10
4

10
5

10
6

10
7

-60

-50

-40

-30

-20

-10

0

f1

f2

f3

Hz

dB

12

%[b,a]= noise_filter(f1,f2,f3,fs) 3/6/18 nr

%

% find coeffs of three-filter cascade for noise shaping:

% 2nd order LP, plus two Proportional-Derivative (PD)

% f1 = corner of LP, Hz

% f2= corner of 1st PD filter, Hz

% f3= corner of 2nd PD filter, Hz

% fs= sample frequency, Hz

% for widely spaced frequencies, the approximate slopes are:

% -12 dB/octave between f1 and f2

% -6 dB/octave between f2 and f3

% flat above f3

%

function [b,a]= noise_filter(f1,f2,f3,fs);

% LPF Use impulse invariant design to avoid null at fs/2.

w1= 2*pi*f1;

num= 1;

den= [1/w1.^2 sqrt(2)/w1 1]; % s-domain 2nd order Butterworth. [1 sqrt(2) 1]

[b,a]= impinvar(num,den,fs);

% PD filter 1

w2= 2*pi*f2;

d0= fs/w2;

d1= 1 - d0; % FIR PD

d= [d0 d1];

% PD filter 2

w3= 2*pi*f3;

e0= fs/w3;

e1= 1 - e0;

e= [e0 e1]; % FIR PD

b= conv(b,conv(d,e)); % cascade 3 filters (only 1st filter has denom)

13

Appendix B. Matlab Function adc_jitter_cubic

The function adc_jitter presented in Part 1 used parabolic interpolation. This version uses cubic

interpolation. Figure B1 shows the frequency response of the cubic interpolator for mu= 0.5. Because

the output is downsampled by two, only the frequency range from 0 to fs/4 is used.

%function y= adc_jitter_cubic(x,dsample) 4/21/18 Neil Robertson

% Model ADC with jitter on sample clock, computing jittered samples by

% cubic interpolation.

% Add jitter to input signal x, then downsample by 2.

%

% x input signal vector

% dsample input jitter vector, jitter in samples

% y output signal vector with jitter, sample freq = 1/2 of input fs

%

function y= adc_jitter_cubic(x,dsample)

if length(x)~=length(dsample)

 error(' x and dsample must be of equal length')

end

N= length(x);

V= x;

% find jittered samples using cubic interpolation

mu= 0.5 + dsample; % mu = 0.5 +/- jitter

% Farrow coefficients

b1= [-1 6 -3 -2]/6;

b2= [0 1 -2 1]/2;

b3= [1 -3 3 -1]/6;

u= zeros(1,N);

for n= 4:N;

 Vreg= V(n:-1:n-3); % reg holding 4 samples of V, current sample first

 u(n)= Vreg(3) +...

 mu(n)*(sum(b1.*Vreg) + mu(n)*(sum(b2.*Vreg) + mu(n)*sum(b3.*Vreg)));

end

y= u(1:2:end); % downsample by 2

14

Figure B.1 Cubic Interpolator frequency response for mu= 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-25

-20

-15

-10

-5

0

5

f/fs

dB

15

Appendix C. Matlab Code to Demodulate Phase of ADC Output

Here is the code used to demodulate the ADC output in Example 3 and plot the jitter histograms in

Figure 7.

% demodulate ADC output y

Ts_adc= 1/fs_adc;

n= 0:Nadc-1;

LO= exp(-j*2*pi*f0*n*Ts_adc); % complex local oscillator at f0

d= LO.*y; % complex output of mixer

fc= .5E6;

[b,a]= butter(5,2*fc/fs_adc); % demodulator LPF coeffs

z= filter(b,a,d); % perform LP filtering

I= 2*real(z(65:end));

Q= 2*imag(z(65:end));

phi_d= atan(Q./I); % demodulated phase

mean= sum(phi_d)/length(phi_d); % mean phase

phi_d= phi_d - mean; % center phase at 0 radians

ps= -1000:125:1000; % ps histogram bins

% plot sample clock jitter dt_ps as a histogram

[m,ps]= hist(dt_ps,ps);

p= m/sum(m); % probability of each bin

subplot(121),bar(ps,p),grid

xlabel('ps'),ylabel('probability'), axis([-1000 1000 0 .2])

% plot ADC output jitter (jitter_ps) as a histogram

jitter_ps= 1E12* phi_d/(2*pi*f0);

[m,ps]= hist(jitter_ps,ps);

p= m/sum(m); % probability of each bin

subplot(122),bar(ps,p),grid

xlabel('ps'),ylabel('probability'),axis([-1000 1000 0 .2])

