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ADC Clock Jitter Model, Part 2 – Random Jitter 

 

In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it 

to examples with deterministic jitter.  Now we’ll investigate an ADC with random clock jitter, by using a 

filtered or unfiltered Gaussian sequence as the jitter source.  What we are calling jitter can also be called 

time jitter, phase jitter, or phase noise.  It’s all the same phenomenon.  Typically, we call it jitter when 

we have a time-domain representation, and noise when we’re in the frequency domain. 

 

We’ll look at three examples:  band-limited Gaussian jitter, wideband Gaussian jitter, and close-in phase 

noise.  In all of the examples, the analog input signals are pure sinewaves, either single or multiple.  So 

keep in mind that the noise on the output signals is caused by the sample clock (and to a lesser degree 

by quantization).  A Matlab function adc_jitter for modeling the ADC jitter is listed in the appendix of 

Part 1.  I’ve also added a modified version, adc_jitter_cubic in Appendix B of this article.   
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Example 1.  Band-limited Gaussian jitter  

 

In this example, we model an ADC with band-limited Gaussian jitter on its sample clock.  We use a 

simple Butterworth filter to provide the band limiting.  While this is not a typical real-world case, it 

shows that random jitter sidebands behave similarly to the sinusoidal jitter we modeled in Part 1.   

 

As in Part 1, we have to create the input signal and the time jitter vector before we call the Matlab 

function.  First, we define the ADC sample rate and input signal frequency.  Also, we define the 

simulation sample rate, which is twice the ADC sample rate. 

 
randn('state',1)  %  reset random number generator 

fs_adc= 10E6;   % Hz ADC sample rate 

f0 = 1E6;    % Hz ADC input sinewave frequency 

fs= 2*fs_adc;   % Hz simulation sample rate 

 

Next, define the analog input sinewave x: 
 

Ts= 1/fs; 

N= 2^15; 

n= 0:N-1; 

 

x= sin(2*pi*f0*n*Ts);    % adc input 

 

Now we create a lowpass Butterworth filter and use it to filter a Gaussian random sequence.  The 7th 
order filter’s cutoff frequency is 0.5 MHz.  The units of the jitter amplitude is seconds.  We compute the 
jitter in samples = dt/Ts, then call the Matlab function adc_jitter.  Finally, we quantize the output to 
10 bits. 
 

% create random band-limited jitter 

 

fc= .5e6;       % Hz cutoff freq of noise filter 

[b,a]= butter(7,2*fc/fs);  % coeffs of noise filter 

 

A= 1e-9;        % s jitter std. deviation before filtering 

u= A*randn(1,N);     %  AWGN sequence 

 

dt= filter(b,a,u);   % s  filtered sequence = jitter of sample clock 

dsample= dt/Ts;  %    jitter in samples 

 
y= adc_jitter(x,dsample);    % ADC jitter function 

 

nbits= 10;    %    ADC number of bits (ideal quantization) 

y= floor(2^(nbits-1)*y)/2^(nbits-1); 

 

The output y is at the fs_adc sample rate of 10 MHz.  Figure 1 shows the spectra of the input sine wave 

and ADC output.  The jitter has created a noise pedestal with bandwidth of 1 MHz.  Now let’s create an 

input signal using two sine waves, one centered at 1 MHz, and the other at 4 MHz: 

 
x= .5*(sin(2*pi*f0*n*Ts) + sin(2*pi*4*f0*n*Ts));  % adc input 
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The resulting spectra are shown in Figure 2.  As you can see, the noise pedestal of the high frequency 

signal is about 12 dB higher than that of the low frequency signal.  This agrees with the relationship of 

Equation 3 in Part 1 for sinusoidal jitter, i.e., sideband level varies as 20*log10 of the input signal’s carrier 

frequency:  20*log10(4 MHz/1 MHz) = 12 dB. 

 

 
Figure 1.  ADC with band-limited Gaussian jitter on sample clock and sinusoidal input. 

   Top:  Spectrum of input signal  Bottom:  Spectrum of output signal 
       Nadc= N/2;  psd(y,Nadc/8,fs_adc/1e6,flattopwin(Nadc/8)) 
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Figure 2.  ADC with band-limited Gaussian jitter on sample clock and dual sinusoidal input. 

   Top:  Spectrum of input signal  Bottom:  Spectrum of output signal 

 

 

Example 2.  Wideband  Gaussian jitter 

 

Figures 3 and 4 show the spectra for a sine input to the ADC at 4 Mhz.  Both have the same standard 

deviation of the sample clock jitter to start, but in Figure 3, the jitter is filtered, while it is not filtered in 

Figure 4 (wideband jitter).  The wideband jitter is generated as follows, using the same standard 

deviation as example 1: 

 
A= 1e-9;       % s jitter std. deviation 

u= A*randn(1,N);    %  AWGN sequence 

dt= u;     % s  jitter of sample clock 

 

We might expect the noise levels near 4 MHz to be the same, but the noise of the wideband jitter case is 

about 3 dB higher.  The reason is that when adc_jitter downsamples the signal by 2, the wideband 

noise between fs/2 and fs is aliased into the 0 to fs/2 band.  We can call this phenomenon a “feature” of 

adc_jitter, rather than a bug, because it occurs in real-world ADC’s as well.  In fact, the noise energy 

of the sample clock can alias multiple times, since the bandwidth of the sample clock path is normally 

several times the sample frequency.  Unfortunately, the user does not typically know this bandwidth.   

 

If the wideband noise floor is too high, it can harm the ADC’s SNR more than the close-in phase noise.  

However, low-pass filtering the sample clock is not a cure-all; if the edge is too slow, jitter can be added 

due to ground noise being transferred to the clock.  See [1] for a more detailed discussion. 
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Figure 3.  Spectrum of ADC output with band-limited Gaussian jitter on sample clock 

  and sinusoidal input at 4 MHz. 

 

 

Figure 4.  Spectrum of ADC output with wideband Gaussian jitter on sample clock 

   and sinusoidal input at 4 MHz. 
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Here’s another peculiar effect of wideband jitter.  As we have seen, the spectral noise due to sample 

clock jitter depends on the frequency of the input signal.  Consider an example shown in Figure 5 with 

wideband Gaussian noise on the sample clock.  There are noiseless input sinewaves at 1 MHz and 2.3 

MHz, and the signal at 2.3 MHz is 20 dB lower than the signal at 1 MHz.  If we move the larger signal to 4 

MHz, the noise floor rises by 12 dB (as in Example 1).  So the “victim” signal at 2.3 MHz sees its SNR 

degraded by 12 dB, just due to the new frequency of the larger signal. 

 
Figure 5.  ADC output spectra for two frequencies of input aggressor signal. 

                 Top:  Aggressor signal at 1 MHz.    Bottom:  Aggressor signal at 4 MHz. 
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Example 3.  Close-in Phase Noise   

 

In this example, we model sample clock close-in phase noise by shaping Gaussian noise to resemble a 

real-world clock source [2].  The noise has a flat region up to almost 10 kHz, followed by frequency 

ranges with -12 dB/octave and -6 dB/octave slope, followed by flat noise.  We achieve this by 

synthesizing a filter with the desired response and using it to filter Gaussian noise.  A Matlab function to 

synthesize the filter is listed in Appendix A. 

 

As in the earlier examples, I started out using parabolic interpolation to model the ADC jitter, but the 

resulting jitter at the ADC output was typically about 7% less than the sample clock jitter.  I switched to 

cubic interpolation [3, 4] and got more accurate results.  The Matlab function adc_jitter_cubic is 

listed in Appendix B (The parabolic interpolation version is listed in the appendix of Part 1).  Note that 

the cubic interpolator frequency response for mu= 0.5 is about 1 dB down at fs/4.   

 

The ADC input is a noiseless sinewave.  We define the various simulation parameters as in Example 1, 

noting that input sinewave frequency f0= 3 MHz and the number of samples N is 2^17 = 131,072. 

 
randn('state',3)  % initial state of RN generator 

fs_adc= 10E6;   % Hz ADC sample rate 

f0 = 3E6;    % ADC input sinewave frequency 

 

fs= 2*fs_adc;   % Hz simulation sample rate 

 

Ts= 1/fs; 

N= 2^17; 

n= 0:N-1; 

 

x= sin(2*pi*f0*n*Ts);    % adc input 

 

Next we define the noise shaping filter, using three frequencies to determine the regions of different 
slope.  Then we filter the Gaussian sequence and call the function adc_jitter_cubic.  We quantize 
the ADC output to 10 bits. 
 

f1= 10000; f2= 100000; f3= 1e6;     % Hz filter breakpoints 

[b,a]= noise_filter(f1,f2,f3,fs); 

 

A= 9e-9;            % s jitter sigma before noise filter 

u= A*randn(1,N); 

 

dt= filter(b,a,u);      % s  jitter of sample clock 

dsample= dt/Ts;       %   jitter in samples 

 
y= adc_jitter_cubic(x,dsample);  % ADC jitter function (cubic interp) 

 

nbits= 10;        % ADC number of bits (ideal quantization) 

y= floor(2^(nbits-1)*y)/2^(nbits-1);   % quantize to nbits 
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The resulting spectrum at the ADC output is shown in Figure 6, which has a frequency span of 400 kHz.  

For an ADC output sequence of length 216, we employed spectrum averaging with a psd of length of 

216/4 = 16,384 samples.  For our ADC sample frequency of 10 MHz, this gives a frequency resolution of 

roughly 1 kHz using a flat-top window.  Had we used a sample frequency of 100 MHz, the frequency 

resolution would have been very coarse at about 10 kHz.  This shows the challenge of modeling close-in 

phase noise in the frequency domain:  the signal of interest has bandwidth much less than the sample 

rate.  So we need many samples to get the desired frequency resolution. 

 

Now let’s compare the jitter on the ADC output signal to the sample clock jitter:  they should be 

approximately equal.  To do this, we have to phase-demodulate the signal.  The code to perform 

demodulation is listed in Appendix C.  We call the demodulator output ϕd.  The time jitter is: 

 

Δ𝑡 =  
𝜙𝑑

2𝜋
𝑇0 

 

=  
𝜙𝑑

2𝜋𝑓0
 

 

The jitter on the sample clock and on the ADC output signal are plotted as histograms in Figure 7.  We 

can also compare the rms jitter of the sample clock and ADC output.  RMS jitter is: 

 

Δ𝑡𝑟𝑚𝑠 = (
∑(Δ𝑡)2

𝑁
)

1/2

 

 

Here are the Matlab calculations.  The rms output jitter is only 1.2% away from the rms sample clock 

jitter: 

 
dt_ps_rms= sqrt(sum(dt_ps.^2)/N)  % ps  rms jitter of sample clock 

 
jitter_ps_rms= sqrt(sum(jitter_ps.^2)/length(jitter_ps))  % ps rms jitter 

of output 

 
dt_ps_rms =  276.7063 

jitter_ps_rms = 280.0680 
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Figure 6.  Spectrum of ADC output for sample clock with shaped Gaussian noise. 
Nadc= N/2;  psd(y,Nadc/4,fs_adc/1e6,flattopwin(Nadc/4)) 

 

 

 
Figure 7.  Jitter Histograms for shaped Gaussian noise on sample clock 

    Left:  Jitter of sample clock. Right:  Jitter on sinewave at ADC output, f0 = 3 MHz. 
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Appendix A     Matlab Function   noise_filter 

 
This function synthesizes a noise-shaping filter as a cascade of a 2nd order Butterworth lowpass and two 
proportional + derivative (PD) filters.  The function’s inputs are sample rate and three frequencies that 
set the corner frequencies of the constituent filters.  For widely spaced frequencies, the approximate 
slope of the filter response is: 

• flat to f1 

• -12 dB/octave between f1 and f2 

• -6 dB/octave between f2 and f3 

• flat above f3 
 

Each PD filter has flat response from dc to just below the corner frequency f2 or f3, then the response 
rises at +6 dB/octave.  H(z) is given by: 
 

𝐻(𝑧) = 𝑏0 + 𝑏1𝑧−1  , 
 

where, for example, to achieve corner frequency of approximately f2, b0 and b1 are: 
 

𝑏0 =
𝑓𝑠

2𝜋𝑓2
 

 
 

     𝑏1 = 1 −
𝑓𝑠

2𝜋𝑓2
 

 
The overall filter response used in Example 3 is shown in Figure A.1 vs. a log frequency scale.   
 

 

Figure A.1  Noise shaping filter response for f1 = 10 kHz, f2= 100 kHz, f3= 1 MHz, fs= 10 MHz 
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%[b,a]= noise_filter(f1,f2,f3,fs)  3/6/18 nr 

% 

% find coeffs of three-filter cascade for noise shaping: 

%  2nd order LP, plus two Proportional-Derivative (PD) 

% f1 = corner of LP, Hz 

% f2= corner of 1st PD filter, Hz 

% f3= corner of 2nd PD filter, Hz 

% fs= sample frequency, Hz 

% for widely spaced frequencies, the approximate slopes are: 

%  -12 dB/octave between f1 and f2 

%  -6 dB/octave between f2 and f3 

%   flat above f3 

% 

function [b,a]= noise_filter(f1,f2,f3,fs); 

 

 

% LPF   Use impulse invariant design to avoid null at fs/2. 

 

w1= 2*pi*f1; 

num= 1; 

den= [1/w1.^2 sqrt(2)/w1 1];  % s-domain 2nd order Butterworth. [1 sqrt(2) 1] 

 

[b,a]= impinvar(num,den,fs); 

 

% PD filter 1 

w2= 2*pi*f2; 

d0= fs/w2; 

d1= 1 - d0;   % FIR PD 

 

d= [d0 d1]; 

 

% PD filter 2 

w3= 2*pi*f3; 

e0= fs/w3; 

e1= 1 - e0; 

e= [e0 e1];  % FIR PD 

 

 

b= conv(b,conv(d,e));  % cascade 3 filters  (only 1st filter has denom) 
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Appendix B.    Matlab Function adc_jitter_cubic 

 

The function adc_jitter presented in Part 1 used parabolic interpolation.  This version uses cubic 

interpolation.  Figure B1 shows the frequency response of the cubic interpolator for mu= 0.5.  Because 

the output is downsampled by two, only the frequency range from 0 to fs/4 is used. 

 
%function y= adc_jitter_cubic(x,dsample)  4/21/18     Neil Robertson 

% Model ADC with jitter on sample clock, computing jittered samples by 

% cubic interpolation. 

% Add jitter to input signal x, then downsample by 2. 

% 

% x     input signal vector 

% dsample   input jitter vector, jitter in samples 

% y           output signal vector with jitter, sample freq = 1/2 of input fs 

% 

function y= adc_jitter_cubic(x,dsample) 

 

if length(x)~=length(dsample) 

   error('   x and dsample must be of equal length') 

end 

 

N= length(x); 

V= x; 

 

% find jittered samples using cubic interpolation 

 

mu= 0.5 + dsample;         % mu = 0.5 +/- jitter 

 

% Farrow coefficients 

b1= [-1 6 -3 -2]/6;        

b2= [0 1 -2 1]/2;     

b3= [1 -3 3 -1]/6; 

 

u= zeros(1,N); 

for n= 4:N; 

   Vreg= V(n:-1:n-3);     % reg holding 4 samples of V, current sample first 

   u(n)= Vreg(3) +... 

      mu(n)*( sum(b1.*Vreg) + mu(n)*(sum(b2.*Vreg) + mu(n)*sum(b3.*Vreg))); 

end 

 

y= u(1:2:end);     % downsample by 2 
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Figure B.1  Cubic Interpolator frequency response for mu= 0.5. 
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Appendix C.    Matlab Code to Demodulate Phase of ADC Output 

 

Here is the code used to demodulate the ADC output in Example 3 and plot the jitter histograms in 

Figure 7. 

 
% demodulate ADC output y 

 

Ts_adc= 1/fs_adc; 

n= 0:Nadc-1; 

 

LO= exp(-j*2*pi*f0*n*Ts_adc);  % complex local oscillator at f0 

 

d= LO.*y;        % complex output of mixer 

 

fc= .5E6; 

[b,a]= butter(5,2*fc/fs_adc);    % demodulator LPF coeffs 

 

 

z= filter(b,a,d);      % perform LP filtering 

 

I= 2*real(z(65:end)); 

Q= 2*imag(z(65:end)); 

 

phi_d= atan(Q./I);                % demodulated phase 

mean= sum(phi_d)/length(phi_d);   % mean phase 

phi_d= phi_d - mean;      % center phase at 0 radians 

 

 

ps= -1000:125:1000;     % ps histogram bins 

 

% plot sample clock jitter dt_ps as a histogram 

[m,ps]= hist(dt_ps,ps); 

p= m/sum(m);       % probability of each bin 

subplot(121),bar(ps,p),grid 

xlabel('ps'),ylabel('probability'), axis([-1000 1000 0 .2]) 

 

% plot ADC output jitter (jitter_ps) as a histogram 

 

jitter_ps= 1E12* phi_d/(2*pi*f0); 

[m,ps]= hist(jitter_ps,ps); 

p= m/sum(m);       % probability of each bin 

subplot(122),bar(ps,p),grid 

xlabel('ps'),ylabel('probability'),axis([-1000 1000 0 .2]) 

 


